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Stratification of multiples of the elementary cell of a 
polyethylene line chain 
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t Institute of Physics, A Mickiewie University, 6C469 PoznaB, Matejki 4/49, Poland 
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Abstract. The breakdom o f  translational sy”e1ty of a polyethylene chain, associated 
with a Peierk-like phase transition, has been analysed using the general principles of 
’action of a group on a set’. All possible phase transitions (dimerization, trimerizalion, 
or, in general, p-merization) are classified and the romponding driving modes are 
derived, 

1. lntroduction 

Several compounds, such as polymers or organic complexes of the TCNQ salt type, 
exhibit a periodic ordering only along a single direction. Because of this one- 
dimensional translational invariance, such compounds are referred to as line (or 
rod) crystals. Physical properties of the line crystals differ appreciably from those of 
the classical ones (periodic in three dimensions) for two reasons. (i) A weak coupling 
between chains, accompanying strong interactions within each chain, yields a large 
anisotropy. (ii) One-dimensional ordering imposes some specific phenomena, which 
do not occur in three dimensions: Peierls-Frolich phase transitions (Peierls 1955, 
Rice and Strasler 1973, Allender ef a1 1974), anomalous infrared activity (Rice el 
a1 1977, Rice 1979, Graja ef a1 1981), or high-temperature superconductivity (Keller 
1975, Jerome and Schultz 1982). Such phenomena arise as a result of a static defor- 
mation of the chain, where two, three or more elementary cells join together forming 
a new effective cell. This corresponds to dimerization, trimerization, or, in general, p- 
merization of the chain. Such deformations partially break the translational symmetry 
of the line crystal. 

The aim of this paper is an analysis of some group-theoretic aspects of the break- 
ing of translational symmetry of l i e  polymers taking polyethylene as an example. 
Breakdown of symmetry, described classically within the thermodynamic Landau the- 
ory (Landau 1937, Landau and Lifschitz 1968), can be analysed more transparently 
by some new methods based on general rules of ‘action of a group on a set’ (Aseher 
1977, Michel and Mozrzymas 1977, Michel 1980, Mozrzymas 1988). Within these 
methods, the symmetry of the system is made transparent hy a stratification of the 
configuration space, and the possible phase transitions are related to appropriate 
lattices of epikernels. 

The simplest case of such a translation, Le. a dimerization of the polyethylene 
chain, is given by us elsewhere (Kuima et a1 1989). Here we extend this treatment to 
a more general case of p-merization (trimerization, tewamerization, etc). 
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Fi&ure 1. Polyethylene chaw, ----, unit; -, double; - . -, threefold clementaly 
cells. Succersive numbers in brackets denote cat" atoms in the unit, doubled and 
threefold elementary cells, respectively 

2. The local symmetry group of a p-tuple elementary cell of the polyethylene chain 

The polyethylene chain (figure 1) is an example of a line crystal. It can be visualised 
as an array of carbon and hydrogen atoms, periodic along the invariant axis (the 
z-axis in figure 1). The full spatial symmetry of an infinitive polyethylene chain is 
given by the l i e  group L ( a )  = L2,/mcm in the notation of VujiciC el al (1977), a 
being the lattice constant. Let T ( a )  a L ( a )  be the maximal translation subgroup of 
L ( a ) .  Then the quotient group 

&(a) = L ( a ) / T ( a )  (1) 

describes the geometric distribution of atoms in the onedimensional elementary cell 
of the chain. 

An important question in the theory of Peierls-like transitions is: how docs one 
extract the order-parameter space from the entire 3N n-dimensional configurational 
space, with N and n being respectively the number of elementary cells and the 
number of atoms in a single cell. "he geometric action of the line group L ( a )  in the 
configuration space of the chain decomposes it into subspaces labelled by irreps of 
L ( a ) .  In particular, the subgroup T ( a )  of L ( a )  allows us to eliminate translational 
degrees of freedom, labelled by the quasimomentum which ranges over the Brillouin 
zone. We are thus left with 3n-dimensional secular equations, associated with 'local 
degrees of freedom' (i.e. Fourier transforms of displacements), corresponding to n 
atoms in the single elementary cell. These local degrees of freedom are labelled by 
irreps of the quotient group Q(a). 

Such a distinction between local and translational degrees of freedom works per- 
fectIy well within the scheme of small erystal vibrations (harmonic phonons), but 
it is advisable to modify it for the case of Peierls-like phase transitions involving p- 
merization, ie. breaking of translational symmeby from T ( a )  to ?'(pa) a L ( a ) , p  = 
2,3,. . . . In order to encompass all relevant displacements, one has to introduce a 
larger quotient group 

Q b a )  = L ( a ) / T ( p a )  (2) 

which is responsible for the distribution of atoms in the p-merized elementary cell. 
This group actS in the space of extended local degrees of freedom-the 3pn- 
dimensional space, embracing all possible order parameters, i.e. all modes able to 
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drive a p-merization. Evidently, the group &(pa) can be looked at as a finite line 
group, corresponding to the Born-wn Mrmrln conditions with the period p a .  It 
has the subgroup of ‘pure glides’, generated by the translation E (  a) of the period a 
modulo p a .  Pure glides form a cyclic group 

Tp = { k ( a )  I i =  1 ,2 ,  ..., p }  U Q(pa) (3) 

with 

is the semidirect product of the point group & ( a )  by the group T, of pure glides. A 
general element of Q ( p a )  has the form ( a , g ) ,  with g E &(a) and 

a = ;e(a)  + v ( g )  (6) 

where i e ( a )  is an integer glide, and v ( g )  is the fractional translation, associated with 
the element g E Q(e), imposed by the structure of the line group L(a) (sijacki et 
al 1972). 

In the case of the polyethylene chain of figure 1 we can establish an isomorphism 
Qp : D[,?t - Q(pa), p = 1,2, ... between the extended point group &(pa) 
and the di edral group D(2p)h, defined by 

QfP(CZP) = (a,.*) Q p ( r n )  = ( O , a , ) .  (7) 

In particular, the isomorphisms Ql, Qz and Q3, together with the translations a of (6) 
for p = 3 are listed in table 1, with the notation for elements of dihedral groups 
given in figure 2. This isomorphism can be readily interpreted in terms of Born-von 
K6nnBn conditions: the invariant z-axis is ‘compactiiied’ to the circumference pa, 
the z-axis of Q ( p a )  becomes the principal axis of the dihedral group D(zp)h and 
the y-axis of Q ( p a )  corresponds to the radial direction in the cylindrical reference 
system of the group D In this picture, the element in ( $ , u Z )  generates the 
cyclic subgroup CZp a (2p )hr  which, in turn, generates freely the orbit of carbons 
in the p-tuply enlarged elementary cell. The element (0,  U = )  generates the subgroup 
Clh = {E,an}  U D(Zp)f i ,  which yields the hydrogen scissor H2 for each atom of 
carbon, so that the subgroup CczPlfi generates freely the orbit of hydrogens. The 
semidirect product structure (5) becomes now 

so that, e.g. QP(C&,) = . ( a ) ,  Qp(C&),= U,, Qp(un)  = U= etc. 
We proceed to perform the stratificatlon of the p-tuple elementary cell along the 

lines of K u h a  et a1 (1989). The results for p ,< 3 are given in tables 2 and 3. 
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lhbk 1. Symmetry group of multiples of elementary e l l  of poiyethylene and their 
isomorphisms with point groups Dlh, Dlh and DBh (underlined elements generate the 
isomorphisms). 

E E E E E E 0 
E' c2 E' c3 1 

E" c;' 2 

e,' 5 / 2  

Figure 2. Notation of symmetry elements in D2h, Dlh and Deb groups 

Each stratum is, by definition, a union of such orbits of the action of the group 
Q ( p a )  on the p-merized elementaty cell, which are of the same type, labelled by 
appropriate epikernels, i.e. conjugacy classes of stability groups of points. Thus each 
stratum corresponds to a kind of 'distinguished points' in the p-merized cell. It results 
that the stratification does not depend on p .  For each p we obtain six strata: the 
threedimensional generic stratum S(C,) (i.e. the stratum with the trivial epikernel 
Cl), two twodimensional strata S(C:) and S(C:), two onedimensional S(C,") 
and S(C;,), and one zerodimensional S(C&). In particular, the orbit of (the 
equilibrium positions of) carbon atoms belongs to the stratum S(C&), hydrogen 
a t o m  to S(C:), and centres of carhoncdrbon bonds (points of inversion symmetry) 
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Table 2. Stralification of multiples of elemenlaly cells of polyethylene over groups Q(a), 
Q(Za) and Q(3a). 

Number of elements 
Stratum of the orbit Epikernel 
and its Pans of a trawers 

dimension p =  1 p =  2 p =  3 and their dimension p = 1  p = 2  p = 3  

S(C1) 3 8 16 24 (O,m)x(O,m)x(O, i )  3 CI CI CI 
(o ,m)x(o,-)xI t I  2 
(o,m)x{o)x(o, i)  2 

s(c:) 2 4 8 12 { o } x ( o , m ) x ( o , ~ )  2 c: c: c: 
1 

s(c;) 1 4 8 12 ( O , m ) x { o } x { ~ }  1 c; c; c; 
s(c;") 1 2 4 6 {olx(o,m)x{o) 1 c;" CL C& 

s(c;") 0 2 4 6 {O)x{O)x {f} Q C 2 = V  c;e c;, 
{ O I X  {O)X IO) 0 

"&le 3. Epikmels of multiples of elementary cell of polyethylene (H - stability 
subgroup generating an epikemel; for cach slratum. the Blst and the second mw of 
the lable gives the elements of the group Q ( p a )  and the isomorphic point group G, 
respectively). 

constitute the zero-dimensional stratum S(C,,). It is worth mentioning that the 
latter stratum can be looked at as a generalization of the invariant point, justifying 
the name 'point group'. In this context, the group Q(pa)  for the polyethylene can be 
considered as a '2p point group', the factors 2 and p being the result of respectively 
fractional translations involved in the l i e  group L ( a ) ,  and of the pure glide group 
Tp (3). The p-dependence of the stratification consists merely in embedding of an 
appropriate epikernel in the group &(pa) ,  and the resulting p-tuplication of the 
number of elements of each orbit by the group T, of pure glides. 
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3. Epikernels nnd modes driving the polymerization 

Let M be the mechanical representation, realising the action of the group D(2p)h in 
the 3pndimensional configuration space. Decomposition of M into irreps of D(,p)h 
(eight one-dimensional A,, and B,, , i = 1,2; a =g or U, gerade or ungerade, and 
2(p - 1) two-dimensional E,,, I = 1 ,2 , .  . . , p  - 1) yields an appropriate decompo- 
sition of the configuration space into irreducible subspaces corresponding to various 
symmetric modes. The question is which modes are able to drive a p-merization? 
Our main result can be formulated as follows: a Peierls-like transition in a 

polyethylene line chain, consisting in a p-merization of the chain, can be driven 
only by those irreducible representations E,, or E,, of the group D(,p)h which 
satisfy the condition 

LcD(i,p) = 1 (10) 

where L ~ D  denotes the largest common divisor. In other words, the only modes active 
in a p-merization are those belonging to "0-dimensional irreps E,, or Efv, I being 
mutually prime with p. 

Figure 3. Lattices of epikernals of the D B ~  pint  group. (a) epikemal El,, (b) epikemal 
E,h (c) epikemal &g, (d) epikemal &.. 

The proof is based on the observation that the group of broken symmetry cannot 
enclose-by definition-ither the subgroup Tp of pure glides, or any of its non- 
trivial subgroups T, a Tp, n > 1 (otherwise one has to have a p 'merht ion 
with p' = p / K ) .  Thus any broken symmetry can be characterized exclusively by an 
epikernel given by a subgroup of the quotient group 

D ( 2 p ) h / c p  DZh 

which eliminates all onedimensional irreps r, since 
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Table 4. Kernels of irreducible representations of D 6 h  group. 
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r Ker r 

such irrep already contains the group Cp as a SI :roup ( 

two-dimensional irreps EIS or E,, , I = 1,2,. . . , p - 1, we have 
:mc For 

(13) 
(14) 

This yields LcD(I,2p) = 2 for epikernels admissible to divide a p-merization, which 
is equivalent to (10). The case p = 3 is presented in figure 3 and table 4. 

Table 5. Classification of normal modes of the trimerized elementary cell of polyethylene. 

Orbit G Orbit H 
Ac A rc AH A r H  AH A r H  

The driving modes are constructed and classi6ed by the factorization of the me- 
chanical representation (Lulek 1980, Kuima et al 1980, Lulek and Szopa 1990) 

M = P @ V  (15) 

into the positional part 

P = Pc e PH (16) 
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Figure 4 Mcdes driving lhe phase transilions in the threefold elementary cell in polyethy- 
lene. 

consisting of transitive representations 

g for 1 even P-1 

I=1 
pc = A,, @ Bl,@ E,, v = [  U for 1 odd (17) 

and 
P-1 

I=1 
pH = @ @ @ BZu @ @ (18) 

acting respectively on the orbit of carbons and hydrogens, and the vector factor 

V = A,, @ Bz, @ B1, (19) 

acting on the standard displacement fibre (recall that the pure glide group Tp is 
non-effective in V ,  so Cp = ker V-cf K b a  er al 1989). Thus the modes have the 
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form 

where IaAX) and lA6) are irreducible bases for the positional and vector represen- 
tation, respectively, Q is the repetition label for A in P, and the symbol in square 
brackets is the Clebsch-Gordan coefficient for the group D(?,),. For r = E or 
E,,, with I satisfying (lo), we obtain from (20) all modes drivmg the p-merizatlon. 
The case p = 3 is illustrated in table 5 and figure 4. 

'9. 

4. Find remarks 

Now we are in a position to provide a detailed answer to the question posed in 
section 2. The desired subspace of the configuration space of the onedimensional 
polyethylene chain, enclosing all modes which drive a Peierls-like phase transition 
consisting in a p-merization of the elementary cell, is spanned on all those modes 
given by equation (20), for which the resultant irreps are two-dimensional, t = Erg 
or El,, and 1 is mutually prime with p (equation (10)). Equation (20) provides a 
systematic way of classifying and constructing a complete orthonormal set of such 
modes. The order parameter responsible for any p-merization is confined to the 
space spanned on this set. 

A p-merized elementary cell emerges as a result of appropriate modulation of 
the initial distribution of atoms within the range pa. The symmetry of modulation 
is related to the quotient group &(pa) given by (2), with the structure of a finite 
space group D(2p)h, described by (9, (8) and (9). It is the distributing group for the 
p-merized cell. 
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