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Abstract. The breakdown of translational symmeiry of a polyethylene chain, associated
with a Peierls-like phase transition, has been analysed using the genmeral principles of
‘action of a group on a set’. All possible phase transitions (dimerization, trimerization,
or, in general, p-merization} are classified and the corresponding driving modes are
derived,

1. Introduction

Several compounds, such as polymers or organic complexes of the TCNQ salt type,
exhibit a periodic ordering only along a single direction. Because of this one-
dimensional translational invariance, such compounds are referred to as line (or
rod) crystals. Physical properties of the line crystals differ appreciably from those of
the classical ones (periodic in three dimensions) for two reasons. (i) A weak coupling
between chains, accompanying strong interactions within each chain, yields a large
anisotropy. (ii) One-dimensional ordering imposes some specific phenomena, which
do not occur in three dimensions: Peierls-Frolich phase transitions (Peierls 1955,
Rice and Strassler 1973, Allender et al 1974), anomalous infrared activity (Rice er
al 1977, Rice 1979, Graja et al 1981), or high-temperature superconductivity (Keller
1975, Jerome and Schultz 1982). Such phenomena arise as a result of a static defor-
mation of the chain, where two, three or more elementary cells join together forming
a new effective cell. This corresponds to dimerization, trimerization, or, in general, p-
merization of the chain. Such deformations partially break the translational symmetry
of the line crystal.

The aim of this paper is an analysis of some group-theoretic aspects of the break-
ing of tramslational symmetry of line polymers taking polyethylene as an example.
Breakdown of symmetry, described classically within the thermodynamic Landau the-
ory (Landau 1937, Landau and Lifschitz 1968), can be analysed more transparently
by some new methods based on general rules of ‘action of a group on a set’ (Ascher
1977, Michel and Mozrzymas 1977, Michel 1980, Mozrzymas 1988). Within these
methods, the symmetry of the system s made transparent by a stratification of the
configuration space, and the possible phase tramsitions are related to appropriate
lattices of epikernels.

The simplest case of such a translation, ie. a dimerization of the polyethylene
chain, is given by us elsewhere (KuZma e a! 1989). Here we extend this treatment to
a more general case of p-merization (trimerization, tetramerization, etc.).
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Figure 1. Polyethylene chain; ----, unit;, ——, double; — - —, threefold elementary
cells. Successive numbers in brackets denote carbon atoms in the unit, doubled and
threefold elementary cells, respectively

2. The local symmetry group of a p-tuple elementary cell of the polyethylene chain

The polyethylene chain (figure 1) is an example of a line crystal. It can be visualised
as an array of carbon and hydrogen atoms, periodic along the invariant axis (the
z-axis in figure 1). The full spatial symmetry of an infinitive polyethylene chain is
given by the line group L(a) = L2,/mem in the notation of Vujici€ er al (1977), e
being the lattice constant, Let T(e) < L{a) be the maximal translation subgroup of
L{a). Then the quotient group

@(a) = L(a)/T(a) )

describes the geometric distribution of atoms in the one-dimensional clementary cell
of the chain.

An important question in the theory of Peierls-like transitions is: how does one
extract the order-parameter space from the entire 3N n-dimensional configurational
space, with N and n being respectively the number of elementary cells and the
number of atoms in a single cell. The geometric action of the line group L(e) in the
configuration space of the chain decomposes it into subspaces labelled by irreps of
L{e). In particular, the subgroup T(a) of L(a) allows us to eliminate translational
degrees of freedom, labelled by the quasimomentum which ranges over the Brillouin
zone. We are thus left with 3n-dimensional secular equations, associated with ‘local
degrees of freedom’ (i.e. Fourier transforms of displacements), corresponding to n
atoms in the single elementary cell. These local degrees of freedom are labelled by
irreps of the quotient gronp Xa).

Such a distinction between local and translational degrees of freedom works per-
fectly well within the scheme of small crystal vibrations (harmonic phonons), but
it is advisable to modify it for the case of Peierls-like phase transitions involving p-
merization, i.c. breaking of translational symmetry from T(a} to T(pa) < L(a),p =

2,3,.... In order to encompass all relevant displacements, one has to introduce a
larger quotient group
Q(pa) = L(a)/T(pa) 2

which is responsible for the distribution of atoms in the p-merized elementary cell.
This group acts in the space of extended local degrees of freedom—the 3pn-
dimensional space, embracing ail possible order parameters, i.e. all modes able to
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drive a p-merization. Evidently, the group Q(pa) can be looked at as a finite line
group, corresponding to the Born-von Kdrmdn conditions with the period pa. It
has the subgroup of ‘pure glides’, generated by the translation (a) of the period o
modulo pa. Pure glides form a cyclic group

T, = {ie(a} | i =1,2,...,p} < Q(pa) 3
with

Q(pa)/T, = Q(a). ®
In fact, the group

Q(pe) = T,0Q(a) ©)

is the semidirect product of the point group Q(e) by the group T, of pure glides. A
general element of Q(pa) has the form (o, g}, with g € Q(a) and

o = iz(a) + (g) ©

where ic(a) is an integer glide, and v(g) is the fractional translation, associated with

the element g € Q(a), imposed by the structure of the line group L{a) (Sijacki et
al 197%).

In the case of the polyethylene chain of figure 1 we can establish an isomorphism

p — Q(pe), p = 1,2,... between the extended point group Q(pa)

and the d:lledral group Dy, defined by

U, (Cyp) = (35 u,) V(o) = (0,0,). ()

In particulat, the isomorphisms ¥,, ¥, and ¥, together with the translations « of (6}
for p = 3 are listed in table 1, with the notation for elements of dihedral groups
given in figure 2. This isomorphism can be readily interpreted in terms of Born-von
Kérmdn conditions: the invariant z-axis is ‘compactified’ to the circumference pa,
the z-axis of Q(pa) becomes the principal axis of the dihedral group Dy, and
the y-axis of Q(pa) corresponds to the radial direction in the cylmdnca] reference
system of the group D3p)- In this p1cture the element in (3,u,) generates the
cyclic subgroup C. b@,p) »» which, in turn, generates freely the orbit of carbons
in the p-tuply enlarged elementary cell. The element (0,0 ) generates the subgroup
Cy = {E,0,} < Dy, which yields the hydrogen scissor H, for each atom of
carbon, so that the subgroup C,, generates freely the orbit of hydrogens. The
semidirect product structure (5) becomes now

Diapyn = G D3 (8
with

U, (C) =T, W, (Dy) = Q(a) = Dy, ®
so that, e.g. W (CZ) =e(a), ¥, (CL) =u,, ¥,(0,) = 0o, et

We proceed to perform the stratification of the p-tuple elementary cell along the
lines of Kuima et a/ (1989). The results for p £ 3 are given in tables 2 and 3.
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Table 1. Symmetry groups of muitipies of elementary cell of polyethylene and their
isomorphisms with point groups Dy, Dyp and Dgy, (underlined elements generate the

isomorphisms).
p=1 p=2 p=3
Q(a) Dan Q(2a) Dy Q(3a) Dgp o
E E E E E E 0
E' o E! C, 1
E" 0;1 2
- 23(ap) e, 2, Z, o 0
ok I ol Ss 1
ol st 2
oy I ay st oy Ss 1/2
o, spt A I ; 3/2
oy S 5/2
o2 a1 oz o2 oz s 0
ot o ol o1 i
-4 o3 2
I e I &3 I -4 1/2
I oy I o 3/2
I o2 5/2
n, ¥ z, % 2, ¥ 1/2
ul uz ul us 3/2
l.lg Us 5/2
Uy uz Uy 7} Uy a2 0
u’y uy uy 1y 1
u;,’ ug 2
z, C, ¥, Co L A Rop 1/2
ul c! ul Ca 3/2
ul et 5/2
u,
G'Ja Gy I
2
u3=C2 f4

Figure 2. Notation of symmetry elements in Dap,, Dan and Dy, groups

Each stratum is, by definition, a union of such orbits of the action of the group
Q(pa) on the p-merized elementary cell, which are of the same type, labelled by
appropriate epikernels, i.e. conjugacy classes of stability groups of points. Thus each
stratum corresponds to a kind of ‘distinguished points’ in the p-merized cell. Tt results
that the stratification does not depend on p. For each p we obtain six strata: the
three-dimensional generic stratum S(C}) (ie. the stratum with the trivial epikernel
i), two two-dimensional strata S(C¥) and S(C7?), two one-dimensional S(C7T)
and S(C3,), and one zero-dimensional S(CgZ,). In particular, the orbit of (the
equilibrium positions of) carbon atoms belongs to the stratum S(C%,), hydrogen
atoms to S(C7), and centres of carbon-carbon bonds (points of inversion symmetry)
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Table 2. Stratification of multiples of elementary cells of polyethylene over groups Q(a),
Q(2a) and Q(3a).

Number of elements

Stratum of the orbit Epikernel
and its Parts of a trawers
dimension r=1 p=2 p=3 and their dimension p=1 p=2 p=3
$(C1) 3 8 16 24 (0,0)x{0,00)x(0,3) 3 < o)
(0#00))((0)'30))({%} 2
(0,00)X'{U}X(O,%) 2
s(csy 2 4 8 12 {0}x(0,00) x (0,1} 2 crf o5d c
{0}x(0,00)x{}} 1
{0}x{8}x {0, } 1
5(cz) 2 4 8 12 (0,00} x (0,00} x {0} 2 O C7 (054
(0,00) x {0}x {0} 1
s(czy 1 4 8 12 (0,00)x {0}x {1} 1 c¢f C3 Cz
5(C%) 1 2 4 6 {0}x(0,00) x {0} 1 c3, Cf O
{o}x{0}x {0} 0
5(c3) o 2 4 6 {0yx{0}x {}} 0 C5 ¢ O
Table 3. Epikemels of multiples of elementary cell of polyethylene (H - stability
subgroup generating an epikernel; for each stratum, the first and the second row of
the table gives the elements of the group Q(pa) and the isomorphic point group G,
respectively).
p=1 (Dzp) p=2(Dyp) P =3 (Den)
Q(pa)
Stratum = @ H ker H ker H ker
s(Cy @ {E} ¢ {E} ¢ {E} <
G {E} C; {EF} 1 {E} Ch
s(cy @ {E, o} C; A{E,o0s} C: A{E,0:} 3
G {E, 03} ¢ {E,ou} Ce  {E,on} c?
s¢n @ {E, 02} C;  {B,e:} ¢; {E,o:} Cy
G {E, o1} C;  {EB,a3} C;  {E,os} C3
s(cg) Q {E, vz} C;  {E,us} C; {E,u:} %3
G {E, u;} C’;} {E,u1} ci {E,u1} CE
S(Cgu) Q {E: uy:"'-‘ha?} Ozyu {E?uylaﬂ!saz} Cg,, {Erurrazsaﬂ} ng
G {B,u2, 03,1} C3, {E,uz,on,02} C3, {E, u2 04 05} cz,
s(cz) Q@ {E,us,I,0z:} CZ, {E,uz, 1,0z} G, {E,ur,l,0:} Cs,
G {E,ﬂl,ﬂ‘z,ﬂ’a} C%u {E: u1,71, D'h} Czlu {E,ul,a;,o'h} C%u

constitute the zero-dimensional stratum S(CY,). It is worth mentioning that the
Jatter stratum can be looked at as a generalization of the invariant point, justifying
the name ‘point group’. In this context, the group Q(pa) for the polyethylene can be
considered as a ‘2p point group’, the factors 2 and p being the result of respectively
fractional translations involved in the line group L(a), and of the pure glide group
T, (3). The p-dependence of the stratification consists merely in embedding of an
appropriate epikernel in the group Q(pe), and the resulting p-tuplication of the
number of elements of each orbit by the group T,, of pure glides.



7550 M Kuzma et al
3, Epikernels and modes driving the polymerization

Let M be the mechanical representation, realising the action of the group D, .y, in
the 3pn-dimensional configuration space. Decomposition of M into irreps of Dy,
(eight one-dimensional A, and B,,, ¢ = 1,2; o =g or u, gerade or ungerade, and
2(p - 1) two-dimensional E;,, { =1,2,...,p— 1) yields an appropriate decompo-
sition of the configuration space into irreducible subspaces corresponding to various
symmetric modes. The question is which modes are able to drive a p-merization?

Our main result can be formulated as follows: a Peijerls-like transition in a
polyethylene line chain, consisting in a p-merization of the chain, can be driven
only by those irreducible representations E,, or E;, of the group D .y, which
satisfy the condition

Lcp(l, p) =1 (10)

where LCD denotes the largest common divisor. In other words, the only modes active
in a p-merization are those belonging to two-dimensional irreps E,, or E;,, { being
mutually prime with p.

Dgr, Osn Ogp, - Dsh
Le2d] B [ean]| 2] [—0-25_11 {ean]  lean] 2] {ca] ()
aj o) ¢ d)

Figure 3. Lattices of epikernals of the Dgy, point group. (a) epikernal By, (b) epikernal
Eiy (c) epikernal Egg, (d) epikernal Egy.

The proof is based on the observation that the group of broken symmetry cannot
enclose—by definition—either the subgroup T, of pure glides, or any of its non-
trivial subgroups T, < T,, « > 1 (otherwise one has to have a p'-merization
with p' = p/k). Thus any broken symmetry can be characterized exclusively by an
epikernel given by a subgroup of the quotient group

Dapyn/ Cp = Dy, (11)
which climinates all one-dimensional irreps I, since

C, < kerl fordimT' =1 (12)
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Table 4. Kemnels of irreducible representations of Dgp group.

T Ker T

A1y Den

Aszg Cen = {F,20%,2C:,C2,1,255,25,08}
By, Déd ={F,20C;,3u',1,25,3¢c'}
Bag DY, ={E,2C;,3¢",1,255,30"}
By C;={E, I}

ETZQ Cap ={Esc2sIl o'l‘l}

Ale De ={FE,2C¢,2C3,Ca,3u",3u"}
Az Csv = {E,2Cs,30C3,C2,30",30"})
B:[u D-’Bh = {E,203,3ﬂ',233,0‘h,30”}
Ba, Dy, = {E,2C3,3u",285;,04,30'}
Elu. C, =‘{E)ah}

By, Cy; ={E, C2}

i.e. each such irrep already contains the group C, as a subgroup of its kernel. For
two-dimensional irreps E;, or E,, I =1,2,...,p — 1, we have

ker Eh‘_ = CLCD(!,2p)' (14)

This yields LCD(I,2p) = 2 for epikernels admissible to divide a p-merization, which
is equivalent to (10). The case p = 3 is presented in figure 3 and table 4.

Table 5. Classification of normal medes of the trimerized elementary cell of polyethytene.

Orbit G Orbit H

AC A re AH A r# AH P r#
Arg Azg Azg Alg Aag Azg By Az Bay
BZE BZg Bzg B:lg BZg Azu

Blu BIu Blu Blu Biy Alg

Ez; AZg EZg B2g Az; Blg B:Zu A:Zg By
B2g Elg B2; Alg Bzg Az

Blu Elu Blu AZu Blu A2g

Blu A’.’g BZu Elg Az; Elg Elu Azg Elu
B25 Azp BZ; E?s B25 E2u

1lu E2u E25

EI u A‘Zg Elu EZ; A25 -E25 Esu A25 E2u
28 Ezu B:Zg El; 28 Elu

lu EZg 1u Elu 1lu EJ.;

The driving modes are constructed and classified by the factorization of the me-
chanical representation (Lulek 1980, KuZma et a/ 1980, Lulek and Szopa 1990)

M=PoV (13)
into the positional part
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gt Ly

Y
Brg Exg* % %29 Eg7”
ler, By £3y x> v By £

W E b St g

u

MP\M

E,u x> IE?& A.?g . y>
g

Figure 4. Modes driving the phase transitions in the threefold elementary cell in polyethy-
lene.

IfJu By Exy ¥ '

consisting of transitive representations

p=-1
g for I even
Fe=A,_ 8B, &) E, v= { 17
© & e E ! for I odd &
and
p—1
Py=A 0B, ©A4,;,6B,0) (E,oE,) (18)

I=1
acting respectively on the orbit of carbons and hydrogens, and the vector factor
V= Ay ® By ® By, (19)

acting on the standard displacement fibre (recall that the pure glide group T, is
non-effective in V, so C, = ker V—cf KuZma et a/ 1989). Thus the modes have "the
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form

|AT~) = AN)|AS) ‘ (20)

[AAI‘] o
where oA A} and |A ) are ureduclb]e bases for the positional and vector represen-
tation, respectively, « is the repetition label for A in P, and the symbol in square
brackets is the Clebsch-Gordan coefficient for the group Dy,,y,. For I' = E;, or
E,,., with [ satisfying (10), we obtain from (20) all modes driving the p-merization.
The case p = 3 is illustrated in table 5 and figure 4.

4. Final remarks

Now we are in a position to provide a detailed answer to the question posed in
section 2. The desired subspace of the configuration space of the one-dimensional
polyethylene chain, enclosing all modes which drive a Peierls-like phase transition
consisting in a p-merization of the elementary cell, is spanned on all those modes
given by equation (20), for which the resultant irreps are two-dimensional, ¢t = E,
or E,,, and ! is mutually prime with p (equation (10)). Equation (20} provides a
systematic way of classifying and constructing a complete orthonormal set of such
modes. The order parameter responsible for any p-merization is confined to the
space spanned on this set.

A p-merized elementary cell emerges as a result of appropriate modulation of
the initial distribution of atoms within the range pe. The symmetry of modulation
is related to the quotient group Q(pa) given by (2), with the structure of a finite
space group Dy, described by (5), (8) and (9). It is the distributing group for the
p-merized cell.
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